Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Craspedacusta sowerbii is an invasive hydrozoan found globally in freshwater habitats. C. sowerbii has a complex life cycle that includes benthic, pelagic, dispersal and dormant stages. The distribution of the medusa (jellyfish) stage has been well documented, but little is known about the other life cycle stages, which are suggested to be more widespread. In addition, the conditions required for growth, reproduction and dispersal of the different life cycle stages, as well as the environmental cues that regulate life cycle transitions, are not fully understood. The aim of this study was to determine laboratory conditions for growth of, and transition to, different life cycle stages in order to improve our ability to culture all life cycle stages of C. sowerbii. In addition, insight into the environmental triggers that promote life cycle transitions will enable us to better predict the potential negative effects C. sowerbii could impose on freshwater ecosystems.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Cnidarians are critical members of aquatic communities and have been an experimental system for a diversity of research areas ranging from development to biomechanics to global change biology. Yet, we still lack a well-resolved, taxonomically balanced cnidarian tree of life to place this research in appropriate phylogenetic context. To move towards this goal, we combined data from 26 new anthozoan transcriptomes with 86 previously published cnidarian and outgroup datasets to generate two 748-locus alignments containing 123,051 (trimmed) and 449,935 (untrimmed) amino acids. We estimated maximum likelihood phylogenies for both matrices under partitioned and unpartitioned site-homogeneous and site-heterogenous models of substitution. We used the resulting topology to constrain a phylogenetic analysis of 1,814 small subunit ribosomal (18S) gene sequences from GenBank. Our results confirm the position of Ceriantharia (tube-dwelling anemones), a historically recalcitrant group, as sister to the rest of Hexacorallia across all phylogenies regardless of data matrix or model choice. We find unanimous support for the sister relationships of Scleractinia and Corallimorpharia and of Endocnidozoa and Medusozoa. We propose the name Coralliformes for the clade uniting scleractinians and corallimorpharians and the name Operculozoa for the clade uniting endocnidozoans and medusozoans. Of the 229 genera with more than a single representative in our 18S hybrid phylogeny, 47 (21%) were identified as monophyletic, providing a starting point for a number of taxonomic revisions. Together, these data are an invaluable resource for comparative cnidarian research and provide perspective to guide future refinement of cnidarian systematics.more » « less
-
Abstract The second annual Cnidarian Model Systems Meeting, aka “Cnidofest”, took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.more » « less
-
Abstract Cnidarians display a wide diversity of life cycles. Among the main cnidarian clades, only Medusozoa possesses a swimming life cycle stage called the medusa, alternating with a benthic polyp stage. The medusa stage was repeatedly lost during medusozoan evolution, notably in the most diverse medusozoan class, Hydrozoa. Here, we show that the presence of the homeobox geneTlxin Cnidaria is correlated with the presence of the medusa stage, the gene having been lost in clades that ancestrally lack a medusa (anthozoans, endocnidozoans) and in medusozoans that secondarily lost the medusa stage. Our characterization ofTlxexpression indicate an upregulation ofTlxduring medusa development in three distantly related medusozoans, and spatially restricted expression patterns in developing medusae in two distantly related species, the hydrozoanPodocoryna carneaand the scyphozoanPelagia noctiluca. These results suggest thatTlxplays a key role in medusa development and that the loss of this gene is likely linked to the repeated loss of the medusa life cycle stage in the evolution of Hydrozoa.more » « less
-
Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of twoHydractiniaspecies,Hydractinia symbiolongicarpusandHydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult maleH. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed thatHydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given thatHydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate thatHydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources forHydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.more » « less
-
Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.more » « less
An official website of the United States government

Full Text Available